Solutions: Homework 1

Nandagopal Ramachandran

October 11, 2019

Problem 1. If (X, d) is any metric space show that every open ball is, in fact, an open set. Also, show that every closed ball is a closed set.

Proof. Let $U=B(x ; r)$ denote the open ball in X with center x and radius r. Let $y \in U$ and $d(x, y)=r-\epsilon$ for some $0<\epsilon \leq r$. Then an application of the triangle inequality shows that $B(y ; \epsilon) \in U$. So U is open. Now, let $V=\bar{B}(x ; r)$ denote the closed ball in X with center x and radius r. We will show that V^{c} is open. Let $y \in V^{c}$ and $d(x, y)=r+\epsilon$ for some $\epsilon>0$. Then $B(y ; \epsilon) \in V^{c}$ by the triangle inequality. So V^{c} is open, hence V is closed.

Problem 2. Let (X, d) be a metric space. Then:
(a) The sets X and ϕ are closed;
(b) If F_{1}, \ldots, F_{n} are closed sets in X then so is $\cup_{k=1}^{n} F_{k}$;
(c) If $\left\{F_{j}: j \in J\right\}$ is any collection of closed sets in X, J any indexing set, then $F=\cap\left\{F_{j}\right.$: $j \in J\}$ is also closed.

Proof. (a) $X^{c}=\phi$ and $\phi^{c}=X$ and since ϕ and X are open, they should also be closed.
(b) By definition, $F_{1}^{c}, \ldots, F_{n}^{c}$ are open sets in X. Since finite intersections of open sets are open, $\cap_{k=1}^{n} F_{k}^{c}$ is open. So $\cup_{k=1}^{n} F_{k}=\left(\cap_{k=1}^{n} F_{k}^{c}\right)^{c}$ is closed.
(c) Again, by definition, we have $\left\{F_{j}^{c}: j \in J\right\}$ is an arbitrary collection of open sets in X. Since arbitrary unions of open sets are open, $F^{c}=\cup\left\{F_{j}^{c}: j \in J\right\}$ is open. So F is closed.

Problem 3. Show that $\left(\mathbb{C}_{\infty}, d\right)$ where d is given by

$$
d\left(z, z^{\prime}\right)=\frac{2\left|z-z^{\prime}\right|}{\left[\left(1+|z|^{2}\right)\left(1+\left|z^{\prime}\right|^{2}\right)\right]^{\frac{1}{2}}} \quad\left(z, z^{\prime} \in \mathbb{C}\right)
$$

and

$$
d(z, \infty)=\frac{2}{\left(1+|z|^{2}\right)^{\frac{1}{2}}}
$$

is a metric space.

Proof. Following the notation in $\S 6$ of Chapter 1, let $f: \mathbb{C}_{\infty} \rightarrow S$ denote the inverse of the stereographic projection. Let dist denote the Euclidean metric on \mathbb{R}^{3}, restricted to S in this case. Then we know that $d\left(z, z^{\prime}\right)=\operatorname{dist}\left(f(z), f\left(z^{\prime}\right)\right)$, by construction. Since dist is a metric, $d\left(z, z^{\prime}\right)=\operatorname{dist}\left(f(z), f\left(z^{\prime}\right)\right) \geq 0$. Suppose $d\left(z, z^{\prime}\right)=0$. Then $\operatorname{dist}\left(f(z), f\left(z^{\prime}\right)\right)=0$, hence $f(z)=f\left(z^{\prime}\right)$, and so $z=z^{\prime}$ as f is bijective. Again, the symmetry and triangle inequality just carries over from dist to d. So d is a metric.

Problem 4. Let A and B be subsets of a metric space (X, d). Then:
(a) A is open if and only if $A=\operatorname{int} A$;
(b) A is closed if and only if $A=\bar{A}$;

(d) $\overline{(A \cup B)}=\bar{A} \cup \bar{B}$;
(e) $x_{0} \in$ int A if and only if there is an $\epsilon>0$ such that $B\left(x_{0} ; \epsilon\right) \subset A$.

Proof. (a) Since int A is open, if int $A=A$, then A is open. Conversely, if A is open, then A is an element of $\{G: G$ is open and $G \subset A\}$. So int $A=A$.
(b) Since \bar{A} is closed, if $\bar{A}=A$, then A is closed. Conversely, if A is closed, then A is an element of $\{F: F$ is closed and $F \supset A\}$. So $\bar{A}=A$.
(c) Since int $A \subset A$, we have $X-A \subset X-$ int A. Since $X-$ int A is closed, we have $\overline{(X-A)} \subset X-$ int A. Similarly, since $X-A \subset \overline{(X-A)}$, so $X-\overline{(X-A)} \subset A$. Since $X-\overline{(X-A)}$ is open, we have $X-\overline{(X-A)} \subset \operatorname{int} A$. So $X-$ int $A \subset \overline{(X-A)}$. This gives us the first equality. Now if we replace A by $X-A$ in the first one, we get the second one. Now $\bar{A}-\operatorname{int} A=\bar{A} \cap(X-\operatorname{int} A)=\bar{A} \cap \overline{(X-A)}$ (by the first equality) $=\partial A$.
(d) Since $A \subset \bar{A}$ and $B \subset \bar{B}$, we have $A \cup B \subset \bar{A} \cup \bar{B}$. Since $\bar{A} \cup \bar{B}$ is closed, we have $\overline{A \cup B} \subset \bar{A} \cup \bar{B}$. Now $A \subset A \cup B$, so $\bar{A} \subset \overline{(A \cup B)}$. Similarly, $\bar{B} \subset \overline{(A \cup B)}$. So $\bar{A} \cup \bar{B} \subset \overline{(A \cup B)}$. This gives equality.
(e) If $x_{0} \in \operatorname{int} A, \exists \epsilon>0$ such that $B\left(x_{0} ; \epsilon\right) \subset \operatorname{int} A$, as int A is open. Since int $A \subset A$, we have $B\left(x_{0} ; \epsilon\right) \subset A$. On the other hand, if $\exists \epsilon>0$ such that $B\left(x_{0} ; \epsilon\right) \subset A$, then since $B\left(x_{0} ; \epsilon\right)$ is open, $B\left(x_{0} ; \epsilon\right) \subset$ int A, hence $x_{0} \in A$.

Problem 5. The purpose of this exercise is to show that a connected subset of \mathbb{R} is an interval.
(a) Show that a set $A \subset \mathbb{R}$ is an interval iff for any two points a and b in A with $a<b$, the interval $[a, b] \subset A$.
(b) Use part (a) to show that if a set $A \subset \mathbb{R}$ is connected then it is an interval.

Proof. (a) It is clear that if A is an interval, then the given criterion holds. Conversely, suppose this holds. Let $c=\inf A$ and $d=\sup A$. Note that these could be $-\infty$ and $+\infty$ respectively. If $c=d$, it is clear that $A=\{c\}$, which is an interval. So, suppose $c<d$. We claim that the interval $(c, d) \subset A$. Suppose not. Then $\exists x \in(c, d)$ such that $x \notin A$. Since x
is neither the supremum, nor the infimum of $A, \exists s<x<t$ with $s, t \in A$. But by the given criterion, $[s, t] \subset A$. In particular, $x \in A$, a contradiction. So $(c, d) \subset A$. Now depending on whether c and/or d are contained in A, we see that A is either an open, semi-open or closed interval.
(b) Suppose A is connected, but not an interval. Then, by part (a), $\exists a, b \in A$ such that $\exists x \in[a, b]$, but $x \notin A$. Then the set $A \cap(-\infty, x]=A \cap(-\infty, x)$ is a proper, non-empty subset of A that is both open and closed. This contradicts the fact that A is connected. So A is an interval.

Problem 6. Prove that if $\left\{D_{j}: j \in J\right\}$ is a collection of connected subsets of X and if for each j and k in J we have $D_{j} \cap D_{k} \neq \phi$ then $D=\cup\left\{D_{j}: j \in J\right\}$ is connected.

Proof. Suppose that D is not connected. Choose a non-empty proper subset A of D that is both open and closed. Since the $D_{j}^{\prime} s$ are connected and $A \cap D_{j}$ is both open and closed in D_{j}, we get that $A \cap D_{j}=\phi$ or D_{j}. Choose j and k in J such that $A \cap D_{j}=D_{j}$ and $A \cap D_{k}=\phi$. Note that we can find such a pair j and k because otherwise, we either have $D_{j} \subset A$ $\forall j \in J$ or $D_{j} \subset D-A \forall j \in J$, which would imply that $A=D$ or $A=\phi$ respectively. Then $(D-A) \cap D_{j}=\phi$ and $(D-A) \cap D_{k}=D_{k}$. Then $D_{j} \cap D_{k}=\left(A \cap D_{k} \cap D_{j}\right) \cup\left((D-A) \cap D_{j} \cap D_{k}\right)=$ $\left(\phi \cap D_{j}\right) \cup\left(\phi \cap D_{k}\right)=\phi$, which contradicts our assumption.

