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Problem 1. If (X, d) is any metric space show that every open ball is, in fact, an open set.
Also, show that every closed ball is a closed set.

Proof. Let U = B(x; r) denote the open ball in X with center x and radius r. Let y ∈ U and
d(x, y) = r− ε for some 0 < ε ≤ r. Then an application of the triangle inequality shows that
B(y; ε) ∈ U. So U is open. Now, let V = B(x; r) denote the closed ball in X with center x
and radius r. We will show that V c is open. Let y ∈ V c and d(x, y) = r + ε for some ε > 0.
Then B(y; ε) ∈ V c by the triangle inequality. So V c is open, hence V is closed.

Problem 2. Let (X, d) be a metric space. Then:
(a) The sets X and φ are closed;
(b) If F1, ..., Fn are closed sets in X then so is ∪nk=1Fk;
(c) If {Fj : j ∈ J} is any collection of closed sets in X, J any indexing set, then F = ∩{Fj :
j ∈ J} is also closed.

Proof. (a) Xc = φ and φc = X and since φ and X are open, they should also be closed.

(b) By definition, F c
1 , ..., F

c
n are open sets in X. Since finite intersections of open sets are

open, ∩nk=1F
c
k is open. So ∪nk=1Fk = (∩nk=1F

c
k )c is closed.

(c) Again, by definition, we have {F c
j : j ∈ J} is an arbitrary collection of open sets in

X. Since arbitrary unions of open sets are open, F c = ∪{F c
j : j ∈ J} is open. So F is

closed.

Problem 3. Show that (C∞, d) where d is given by

d(z, z′) =
2|z − z′|

[(1 + |z|2)(1 + |z′|2)] 12
(z, z′ ∈ C)

and

d(z,∞) =
2

(1 + |z|2) 1
2

is a metric space.
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Proof. Following the notation in §6 of Chapter 1, let f : C∞ → S denote the inverse of
the stereographic projection. Let dist denote the Euclidean metric on R3, restricted to S
in this case. Then we know that d(z, z′) = dist(f(z), f(z′)), by construction. Since dist is
a metric, d(z, z′) = dist(f(z), f(z′)) ≥ 0. Suppose d(z, z′) = 0. Then dist(f(z), f(z′)) = 0,
hence f(z) = f(z′), and so z = z′ as f is bijective. Again, the symmetry and triangle
inequality just carries over from dist to d. So d is a metric.

Problem 4. Let A and B be subsets of a metric space (X, d). Then:
(a) A is open if and only if A = int A;
(b) A is closed if and only if A = A;
(c) int A = X − (X − A);A = X− int(X − A); ∂A = A− int A;
(d) (A ∪B) = A ∪B;
(e) x0 ∈ int A if and only if there is an ε > 0 such that B(x0; ε) ⊂ A.

Proof. (a) Since int A is open, if int A = A, then A is open. Conversely, if A is open, then
A is an element of {G : G is open and G ⊂ A}. So int A = A.

(b) Since A is closed, if A = A, then A is closed. Conversely, if A is closed, then A is
an element of {F : F is closed and F ⊃ A}. So A = A.

(c) Since int A ⊂ A, we have X − A ⊂ X− int A. Since X− int A is closed, we have
(X − A) ⊂ X− int A. Similarly, since X − A ⊂ (X − A), so X − (X − A) ⊂ A. Since
X − (X − A) is open, we have X − (X − A) ⊂ int A. So X− int A ⊂ (X − A). This gives
us the first equality. Now if we replace A by X − A in the first one, we get the second one.
Now A− int A = A ∩ (X− int A) = A ∩ (X − A) (by the first equality) = ∂A.

(d) Since A ⊂ A and B ⊂ B, we have A ∪ B ⊂ A ∪ B. Since A ∪ B is closed, we
have A ∪B ⊂ A ∪ B. Now A ⊂ A ∪ B, so A ⊂ (A ∪B). Similarly, B ⊂ (A ∪B). So
A ∪B ⊂ (A ∪B). This gives equality.

(e) If x0 ∈ int A, ∃ε > 0 such that B(x0; ε) ⊂ int A, as int A is open. Since int A ⊂ A, we
have B(x0; ε) ⊂ A. On the other hand, if ∃ε > 0 such that B(x0; ε) ⊂ A, then since B(x0; ε)
is open, B(x0; ε) ⊂ int A, hence x0 ∈ A.

Problem 5. The purpose of this exercise is to show that a connected subset of R is an
interval.
(a) Show that a set A ⊂ R is an interval iff for any two points a and b in A with a < b, the
interval [a, b] ⊂ A.
(b) Use part (a) to show that if a set A ⊂ R is connected then it is an interval.

Proof. (a) It is clear that if A is an interval, then the given criterion holds. Conversely,
suppose this holds. Let c = inf A and d = supA. Note that these could be −∞ and +∞
respectively. If c = d, it is clear that A = {c}, which is an interval. So, suppose c < d. We
claim that the interval (c, d) ⊂ A. Suppose not. Then ∃x ∈ (c, d) such that x 6∈ A. Since x
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is neither the supremum, nor the infimum of A, ∃s < x < t with s, t ∈ A. But by the given
criterion, [s, t] ⊂ A. In particular, x ∈ A, a contradiction. So (c, d) ⊂ A. Now depending on
whether c and/or d are contained in A, we see that A is either an open, semi-open or closed
interval.

(b) Suppose A is connected, but not an interval. Then, by part (a), ∃a, b ∈ A such that
∃x ∈ [a, b], but x 6∈ A. Then the set A ∩ (−∞, x] = A ∩ (−∞, x) is a proper, non-empty
subset of A that is both open and closed. This contradicts the fact that A is connected. So
A is an interval.

Problem 6. Prove that if {Dj : j ∈ J} is a collection of connected subsets of X and if for
each j and k in J we have Dj ∩Dk 6= φ then D = ∪{Dj : j ∈ J} is connected.

Proof. Suppose that D is not connected. Choose a non-empty proper subset A of D that is
both open and closed. Since the D′

js are connected and A∩Dj is both open and closed in Dj,
we get that A∩Dj = φ or Dj. Choose j and k in J such that A∩Dj = Dj and A∩Dk = φ.
Note that we can find such a pair j and k because otherwise, we either have Dj ⊂ A
∀j ∈ J or Dj ⊂ D − A ∀j ∈ J, which would imply that A = D or A = φ respectively. Then
(D−A)∩Dj = φ and (D−A)∩Dk = Dk. Then Dj∩Dk = (A∩Dk∩Dj)∪((D−A)∩Dj∩Dk) =
(φ ∩Dj) ∪ (φ ∩Dk) = φ, which contradicts our assumption.
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